Course sections

Transformations

At first, we sample f(x) in the N (N is odd) equidistant points around x^*:

    \[ f_k = f(x_k),\: x_k = x^*+kh,\: k=-\frac{N-1}{2},\dots,\frac{N-1}{2} \]

where h is some step.
Then we interpolate points \{(x_k,f_k)\} by polynomial

(1)   \begin{equation*}  P_{N-1}(x)=\sum_{j=0}^{N-1}{a_jx^j} \end{equation*}

Its coefficients \{a_j\} are found as a solution of system of linear equations:

(2)   \begin{equation*}  \left\{ P_{N-1}(x_k) = f_k\right\},\quad k=-\frac{N-1}{2},\dots,\frac{N-1}{2} \end{equation*}

Here are references to existing equations: (1), (2).
Here is reference to non-existing equation (??).

 

\displaystyle \frac{3}{5}

This website uses cookies and asks your personal data to enhance your browsing experience.
Skip to toolbar
This website uses cookies and asks your personal data to enhance your browsing experience.